
Speech Technology Magazine | www.speechtechmag.com

Sponsored ContentFall 2021

Have you ever wanted to operate your own automatic speech
recognition (ASR) Engine?

The benefits are compelling, since you can:

 • guarantee data privacy and service availability;
 • optimize for speed, accuracy or latency;
 • enable use cases that are otherwise cost-prohibitive.

This technical challenge might seem too daunting at first, but
let’s try to break it down as a series of “mods” you can follow.

Mod 1: Choose a Baseline
As a starting point, our ASR Engine should be compatible
with one of the major cloud-hosted platforms. This will let you
easily swap in another service if it’s ever necessary to provide
extended coverage for any of their 100+ languages that may be
difficult to support. Google Cloud Speech-to-Text is a good
choice, thanks to its well-documented client libraries.

Mod 2: Python SDK and REST API
Google provides a Python library and code samples so that
developers can get started with real-time speech recognition;
they also provide a REST endpoint to facilitate processing of
pre-recorded audio. Don’t reinvent the wheel: let’s make an
SDK and API that precisely adhere to these well-designed
specs. This way, porting your code will only require single-line
modifications to drop-in our replacements.

Mod 3: Support Additional Clients
While we’re at it, let’s add a WebSocket interface so web
browsers can send microphone input to your Engine. For
easier command-line debugging, we can expose a simple JSON
messaging protocol over TCP. We can also provide a C++
library in case you might need to optimize low-level integration
in streaming media servers.

Mod 4: Build for Linux and Deploy with Docker
You’ll want this Engine to be a statically linked binary so it will
run on any Linux system, without installing dependencies. We
can also make it easy to deploy REST and WebSocket services
over encrypted HTTPS by packaging these Engine wrappers in
a Docker image.

Mod 5: Calculate Your Costs
Your Engine should be able to process a pre-recorded file 5x
faster than its duration using just one CPU. (Equivalently:
each CPU should handle up to 5 real-time audio streams at
once.) So you could process about 500 hours of audio in one

hour of compute time if you had a server with 96 CPUs. Such
an ec2.metal instance can be rented for just a few dollars an
hour. At scale, then, the cost to run your own Engine can be
mere hundredths of a cent per minute.

Mod 6: Train Some Models, Repackage Others
Training ASR models is difficult, requiring PhD-level
expertise with research-grade software such as Kaldi. Large
quantities of high-quality data might only be obtained for
a couple of major languages, like English and Spanish.
Fortunately, since we’ve chosen to follow a very popular
open-source project, you’ll be able to leverage dozens of freely
licensed models that have already been trained and generously
contributed by the community.

Mod 7: Be Ready To Adapt
Even with excellent pre-trained models, no ASR system will
be perfectly tuned for unexpected use cases with domain-
specific jargon. Let’s make sure that your Engine can be
customized on-the-fly, allowing new words and pronunciations
to be added or corrected — even in the midst of recognizing an
audio stream. You might also want to load your own grammars
on-demand for directed dialog flow scenarios, as well as
boosting phrases that should be recognized more often (or
negatively bias them so they don’t re-appear as errors).

Mod 8: The Kitchen Sink
This Engine has become fairly advanced by now, so we might
as well make everything configurable. Let’s provide fine-
grained control over memory limits and request timeouts.
You may also want to explore innovations like phrase-level
alternatives, designed for Elasticsearch indexing to improve
audio search recall (yet another “ASR”). Finally, let’s attach a
natural language processing (NLP) pipeline for capitalization,
punctuation, and number formatting — you’ll need that post-
processing if you want transcripts to be readable.

Mod 9: Don’t Do It All Yourself!
Of course, all of these steps have already been implemented in
the Mod9 ASR Engine, so you shouldn’t have to build this on
your own! Check out mod9.io to see how it all works.

To get started with a free evaluation of a publicly accessible
Docker image, try this command: docker pull mod9/asr

Contact help@mod9.com if you have any questions.
Or call (HUH) ASK-ARLO to speak with A Real Live Operator.

How to “Mod” Your Own
Speech Recognition Engine

http://mod9.io

